ISSN (online): 2250-141X
Vol. 8 Issue 1, March 2018

International Journal of Science & Technology
www.ijst.co.in

IMPLEMENTING PIVOT SOLUTIONS IN SAP HANA USING
SQL SCRIPT

Venkat Ns Rao | Sr. Lead Consultant— Databases | TekLink Software Private Ltd.
Narayana Varma | Associate Director — SAP HANA & EDW |
TekLink Software Private Ltd.

Abstract—The Study or knowledge of Pivot structure in SAP HANA is necessary feature for developing
this project. To understand Pivot this new script which generates pivot structure is useful. A pivot table is
a data processing tool used to query, organize and summarize data or information between spreadsheets,
tables or databases. Dragging and dropping fields into a pivot table facilitates rotational, or pivotal,
structural changes. Pivot is not provided in SAP HANA as a standard function, hence this feature was
developed using SQL script.

Index Terms— Pivot Table; table; Join; Dynamic SQL;

I. INTRODUCTION

PIVOT rotates a table-valued expression by
turning the unique values from one column
in the expression into multiple columns in
the output and performs aggregations where
they are required on any remaining column
values that are wanted in the final output.
Pivoting is a common technique, especially
for reporting, and it has been possible to
generate pivoted result sets with SQL using
Hana.

II. SOLUTION ABSTRACT

Business Case:

One of our client, a multinational company
which is primarily into coating products was
looking for a flexible and optimal solution
based on SAP HANA for pricing waterfall
analysis. As part of this solution we need to
derive the values of various pricing item
buckets such as rebates, commissions,
discounts etc. for each of the billing items.
One of the challenging requirements in this
entire solution is to convert the tabular data
of invoice items into Pivot structure to show
each pricing bucket in a separate column
against the invoice items. The entire
solution need to be dynamic since the exact

© 1JST

columns in the Pivot results can change
during time.

Implementing Pivot Structure in SAP
HANA:

In specific scenarios such as the one we
encountered in this business case, the
solution need to be implemented to generate
the pivot of the source data records to
generate the required results. A pivot table is
a data processing tool used to query,
organize and summarize data or information
between spreadsheets, tables or databases.
Dragging and dropping fields into a pivot
table facilitates rotational, or pivotal,
structural changes, and pivot logic
implemented using Dynamic SQL.

Dynamic SQL.:

Dynamic SQL allows you to construct an
SQL statement during the execution time of
a procedure. While dynamic SQL allows you
to use variables where they might not be
supported in SQL Script and also provides
more flexibility in creating SQL statements
and Dynamic SQL statements are stored as

International Journal of Science & Technology
www.ijst.co.in

strings of characters that are entered when
the program runs. They can be entered by
the programmer or generated by the program
itself, but unlike static SQL statements, they
are not embedded in the source program.
Also, in contrast to static SQL statements,
dynamic SQL statements can change from
one execution to the next.

Opportunities for optimizations are limited
with Dynamic SQL.

= The statement is potentially recompiled
every time the statement is executed.

= You cannot use SQLScript variables in the
SQL statement.

= You cannot bind the result of a dynamic SQL
statement to a SQLScript variable.

Solution process flow:

Invoice item Pivot table

Process each Invoice line
item
-Read pricing item code
formula

- Decode the formula using
dynamic SQL

- Derive the values for Item
code names

Item Code Formulas

- Read the Item code names

- Prepare the pivot results

Invoice item values table

Algorithm for Pivot development script -
Implemented using stored procedures based
on SQL Script programming

= Define Cursor and take source table formula,
and columns.

© NST

ISSN (online): 2250-141X
Vol. 8 Issue 1, March 2018

Fetch formula and columns from source table
into local variables.

For some of the items value calculated using
formula which is in
"ITEM_FORMULA_MAP" table (for
special discounts etc).

Read formula from
ITEM_FORMULA_MAP table and
remove all square braces using the
REPLACE function in SQL and spilt
formula comma separated string and count
number of IDS(ITEM_ID) in formula using
REPLACE function in code.

If Number of IDs are less than one, then only
one pricing item code is relevant and
formula to calculate the target Pricing Item
code is simple. For this we need to fetch the
values from lookup table for Item code
exists in formula and insert same value into
look up table and construct SQL for final
Pivot Table for target Item.

If Number of IDs are more than one, in that
case the target Pricing Item value should be
calculated from multiple Item Values.

If Number of IDs more than one then using
cursor loop, construct SQL that will fetch
Item invoice number and value for
individual bucket and UNION all the values
and add/subtract as per formula and insert
into Pivot table using dynamic SQL.

Table Structure used for this
development:

Input Data: Invoice line items with the
pricing condition values
Table Structure:

CREATE COLUMN TABLE
"ITEM_VALUES" (
"INVOICE_NUM" VARCHAR(30)

CS_STRING NOT NULL
' INVOICE_ITEM_NUM"
VARCHAR(30) CS_STRING NOT NULL
SITEM_ID" SMALLINT CS_INT NOT
NULL
" TIME_STAMP"
CS_LONGDATE
,"VALUE" DOUBLE CS_DOUBLE
,"RELEVANT_DATE" VARCHAR(8)
CS_STRING

);

LONGDATE

2

International Journal of Science & Technology ISSN (online): 2250-141X

www.ijst.co.in Vol. 8 Issue 1, March 2018
S'"TARGET_ITEM" VARCHAR(50)
NOT NULL
VARCHAR(5000) NOT NULL
) UNLOAD PRIORITY 5 AUTO;
INVOICENUM INVOICE TEMLNUM TEMLID TIVE STAM® VALUE RELEVANT_DATE
T g O T e
b s et 0 a2, W3 4468S9PM 286 030 Sample Data:
b s ot T Jan2d, 8446485190 2076 A0
b Twsem oo T Jan2h, MB44GBI0PM 44T6 A0TTENR
5 s oo 0 Jan2d, 84464831901 35007 070 ORG TARGETITEM | ITEM_FORMULA
6 s oo 0 Jan2d, 184464831900 1052, A0 1 SINGAPORE | 50 (701-(30]
7 T o 70 4, DISAHGASOPM 3507 0L 2 SINGAPORE | 10 (3011.25
G e o 70 2 DISLAGASOPM 110 LS 3 SINGAPORE | 24 (307" 0,251
S T T T Jan2d, 28 446AB0PM 10, MRS
0 TS0 oot T Jan2d, 0844648190 13482 A0TOLLS
0 TS 0ot T Jan2d, 3446483199 BAL, ANTLLS .
I VU T Jandd, DBA4GA50PM 68 1705 Output Table (PIVOt results):
TS oo T Jan2d, 2184464831900 76, A0S
0 TG OO T Jan2h, WB4AGABIOPY 247 0TOLLS
15 TG 00MAL Tl MISEMGABS0PM 2247 20105 CREATE COLUMN TABLE
"ITEM_PIVOT" (
Reference Data (Look up tables): "INVOICE_NUM" VARCHAR(30)
o o _ NOT NULL
1) Pricing Item code and description mappings "INVOICE_ITEM_NUM"
VARCHAR(30) NOT NULL
|tem Look up tab'e ,"VDATE_BlLLlNG_DATE"
CREATE COLUMN TABLE "ITEM_NAMES" NVARCHAR(®)
(,"REGION" VARCHAR(500)
"ITEM_ID" VARCHAR(30) NOT "SUGGESTED_END_USER_PRICE
NULL DOUBLE CS_DOUBLE DEFAULT 0
"ITEM_NAME" VARCHAR(30) NOT S'DISTRIBUTOR_LIST _PRICE
NULL DOUBLE CS_DOUBLE
); "DISTRIBUTOR_ADJUSTMENT"
: DOUBLE CS_DOUBLE
S"SEGMENT_ADJUSTMENT"
DOUBLE CS_DOUBLE
Sample Data "GROSS_INVOICE_PRICE"
DOUBLE CS_DOUBLE DEFAULT 0
”EM;IE ZJE(':;-I:’:;EEND T S'SAMPLE_DISCOUNT™ DOUBLE
20 DISTRIBUTOR_ADJUSTMENT CS_DOUBLE
30 DISTRIBUTOR_LIST_PRICE ,"GROSS_INVOICE_PRICE"
40 REGIONAL_ADJUSTMENT
50 | SEGMENT, ADNISTVENT DOUBLE CS_DOUBLE DEFAULTO0
60 CHANNEL_AD) "REBATES" DOUBLE CS_DOUBLE
70 GROSS_INVOICE_PRICE "COMMISSIONS" DOUBLE
80 COMPETITIVE_PRICE_DISCOUNT
90 NEGOTIATED_DISCOUNT CS_DOUBLE
100 VOLUME_DISCOUNT ,PRIMARY KEY (
110 ORDER_QUANTITY_DISCOUNT
120 OFF_SPEC_DISCOUNT
130 ORDER_QTY_SURCHARGE "INVOICE NUM"
140 TRANSPORTATION_SURCHARGE " — "
150 HANDLING_SURCHARGE SINVOICE_ITEM_NUM
160 ENERGY_SURCHARGE "REGION"
161 COMMODITY SURCHARGE)
) UNLOAD PRIORITY 5 AUTO

2) Pricing Item Formula definitions

Table Structure:

CREATE COLUMN TABLE
"ITEM_FORMULA_MAP" (
"ORG" VARCHAR(100) NOT NULL

___|
© NST 3

International Journal of Science & Technology
www.ijst.co.in

INVOICE_NUM INVOICE ITEM_NUM VDATE BILLING DATE REGION SUGGESTED_END_USER PRICE DISTRIBUTOR_LIST_PRICE
7720673007 000531 0171122 SINGAPORE 20475 1638
7720672575 000141 20170215 SINGAPORE 1,575 1,260
7120673007 000041 2017122 SINGAPORE 11756.25 9,405
7120672902 000162 20170919 SINGAPORE s 2064
7120672575 000631 20170215 SINGAPORE 786.5999999999999 620.28
7120672575 000101 20170215 SINGAPORE 148275 11862
7720673007 000962 20171122 SINGAPORE 1100925 830.74
7120672575 000572 20170215 SINGAPORE 2369 189.52
7120672902 000171 20170919 SINGAPORE 12144 97152
7720672902 000661 20170919 SINGAPORE 1151 9208
7720672902 001089 20170919 SINGAPORE 799.05 639.4
7120673007 000541 20171122 SINGAPORE 3075 25598
7720673007 000051 0171122 SINGAPORE 18375 1470
7120672575 000151 20170215 SINGAPORE m 216
7720673007 000551 20171122 SINGAPORE 27225 2178
7120672575 000602 20170215 SINGAPORE 5355 4284

EXAMPLE FOR ALGORITHM:

» Read item code name for 10 and formula for
item code i.e. [30]*1.25

» Get the name for item code 10 and 30 from
look up table i.e. item code 10 name is
“Suggested end user price” and item code 30
is “Distributor list price”

» For one invoice and item level take value
from formula item and update value using
formula into target item for that invoice num
at item level.

» EX: Invoice num : 7720672575 and
Invoice_item_num : ©00141 for Singapore
region

Item 10 (suggested end user price) formula
is item 30 * 1.25 i.e. (distributor list price
*1.25)

Get the value for item 30 i.e. “distributor
list price” from invoice item values table as
shown below for above invoice number and
invoice item number.

INVOICE_NUM INVOICE_ITEM_NUM VALUE
i1 7720672575 000141 1,260 :

So, for suggested end user price value as per
formula is distributor list price *1.25

l.e. 1260*1.25 =1575 and same value is
updated in Item Pivot table for that invoice
number and invoice item. Similarly, the
values are derived all the invoice items for
remaining items values updated with the
same algorithm.

© NST

ISSN (online): 2250-141X
Vol. 8 Issue 1, March 2018

I1l. CONCLUSION

Understanding of how Dynamic SQL
works will be deeepened with clear
explanations in this white paper and
algorithms. You will be altered to potential
performance problems that are not
mentioned in the documentation and you
will expand your repertoire of tuning
solutions and troubleshooting techniques by
learning how to use numerous hidden
parameters and other undocumented
features.

ACKNOWLEDGMENT

We would like to thank for our organization
to help their technical support and facilitate
lab frequently.

REFERENCES
I. https://technet.microsoft.com/en-us/library/
ms177410(v=sql.105).aspx
Il. https://help.sap.com/viewer/de2486ee947e4
3e684d39702027f8a94/2.0.02/en-US/9667
14d37630404983e8f4e3708ae79c.html

I11.https://blogs.sap.com/2014/12/16/using-array-as-

internal-table-to-handle-and-process-data/

