

International Journal of Science & Technology ISSN (online): 2250-141X
www.ijst.co.in Vol. 8 Issue 1, March 2018

© IJST 1



Abstract—The Study or knowledge of Pivot structure in SAP HANA is necessary feature for developing

this project. To understand Pivot this new script which generates pivot structure is useful. A pivot table is

a data processing tool used to query, organize and summarize data or information between spreadsheets,

tables or databases. Dragging and dropping fields into a pivot table facilitates rotational, or pivotal,

structural changes. Pivot is not provided in SAP HANA as a standard function, hence this feature was

developed using SQL script.

Index Terms— Pivot Table; table; Join; Dynamic SQL;

I. INTRODUCTION

PIVOT rotates a table-valued expression by

turning the unique values from one column

in the expression into multiple columns in

the output and performs aggregations where

they are required on any remaining column

values that are wanted in the final output.

Pivoting is a common technique, especially

for reporting, and it has been possible to

generate pivoted result sets with SQL using

Hana.

II. SOLUTION ABSTRACT

Business Case:

One of our client, a multinational company

which is primarily into coating products was

looking for a flexible and optimal solution

based on SAP HANA for pricing waterfall

analysis. As part of this solution we need to

derive the values of various pricing item

buckets such as rebates, commissions,

discounts etc. for each of the billing items.

One of the challenging requirements in this

entire solution is to convert the tabular data

of invoice items into Pivot structure to show

each pricing bucket in a separate column

against the invoice items. The entire

solution need to be dynamic since the exact

columns in the Pivot results can change

during time.

Implementing Pivot Structure in SAP

HANA:

 In specific scenarios such as the one we

encountered in this business case, the

solution need to be implemented to generate

the pivot of the source data records to

generate the required results. A pivot table is

a data processing tool used to query,

organize and summarize data or information

between spreadsheets, tables or databases.

Dragging and dropping fields into a pivot

table facilitates rotational, or pivotal,

structural changes, and pivot logic

implemented using Dynamic SQL.

Dynamic SQL:

Dynamic SQL allows you to construct an

SQL statement during the execution time of

a procedure. While dynamic SQL allows you

to use variables where they might not be

supported in SQL Script and also provides

more flexibility in creating SQL statements

and Dynamic SQL statements are stored as

IMPLEMENTING PIVOT SOLUTIONS IN SAP HANA USING

SQL SCRIPT

Venkat Ns Rao | Sr. Lead Consultant– Databases | TekLink Software Private Ltd.

Narayana Varma | Associate Director – SAP HANA & EDW |

TekLink Software Private Ltd.

International Journal of Science & Technology ISSN (online): 2250-141X
www.ijst.co.in Vol. 8 Issue 1, March 2018

© IJST 2

strings of characters that are entered when

the program runs. They can be entered by

the programmer or generated by the program

itself, but unlike static SQL statements, they

are not embedded in the source program.

Also, in contrast to static SQL statements,

dynamic SQL statements can change from

one execution to the next.

Opportunities for optimizations are limited

with Dynamic SQL.

 The statement is potentially recompiled

every time the statement is executed.

 You cannot use SQLScript variables in the

SQL statement.

 You cannot bind the result of a dynamic SQL

statement to a SQLScript variable.

Solution process flow:

Algorithm for Pivot development script -

Implemented using stored procedures based

on SQL Script programming

 Define Cursor and take source table formula,

and columns.

 Fetch formula and columns from source table

into local variables.

 For some of the items value calculated using

formula which is in

"ITEM_FORMULA_MAP" table (for

special discounts etc).

 Read formula from

ITEM_FORMULA_MAP table and

remove all square braces using the

REPLACE function in SQL and spilt

formula comma separated string and count

number of IDs(ITEM_ID) in formula using

REPLACE function in code.

 If Number of IDs are less than one, then only

one pricing item code is relevant and

formula to calculate the target Pricing Item

code is simple. For this we need to fetch the

values from lookup table for Item code

exists in formula and insert same value into

look up table and construct SQL for final

Pivot Table for target Item.

 If Number of IDs are more than one, in that

case the target Pricing Item value should be

calculated from multiple Item Values.

 If Number of IDs more than one then using

cursor loop, construct SQL that will fetch

Item invoice number and value for

individual bucket and UNION all the values

and add/subtract as per formula and insert

into Pivot table using dynamic SQL.

Table Structure used for this

development:

Input Data: Invoice line items with the

pricing condition values

Table Structure:

 CREATE COLUMN TABLE

"ITEM_VALUES" (

 "INVOICE_NUM" VARCHAR(30)

CS_STRING NOT NULL

 ,"INVOICE_ITEM_NUM"

VARCHAR(30) CS_STRING NOT NULL

 ,"ITEM_ID" SMALLINT CS_INT NOT

NULL

 ,"TIME_STAMP" LONGDATE

CS_LONGDATE

 ,"VALUE" DOUBLE CS_DOUBLE

 ,"RELEVANT_DATE" VARCHAR(8)

CS_STRING

);

Item Code mappings

Item Code Formulas

Invoice item values table

Process each Invoice line

item

-Read pricing item code

formula

- Decode the formula using

dynamic SQL

- Derive the values for Item

code names

- Read the Item code names

- Prepare the pivot results

Invoice item Pivot table

International Journal of Science & Technology ISSN (online): 2250-141X
www.ijst.co.in Vol. 8 Issue 1, March 2018

© IJST 3

Sample Data:

Reference Data (Look up tables):

1) Pricing Item code and description mappings

Item Look up table

CREATE COLUMN TABLE "ITEM_NAMES"

(

 "ITEM_ID" VARCHAR(30) NOT

NULL

 "ITEM_NAME" VARCHAR(30) NOT

NULL

);

Sample Data

2) Pricing Item Formula definitions

Table Structure:

 CREATE COLUMN TABLE

"ITEM_FORMULA_MAP" (

 "ORG" VARCHAR(100) NOT NULL

 ,"TARGET_ITEM" VARCHAR(50)

NOT NULL
 ,"ITEM_FORMULA"

VARCHAR(5000) NOT NULL

) UNLOAD PRIORITY 5 AUTO;

Sample Data:

Output Table (Pivot results):

 CREATE COLUMN TABLE

"ITEM_PIVOT" (

 "INVOICE_NUM" VARCHAR(30)

NOT NULL

 ,"INVOICE_ITEM_NUM"

VARCHAR(30) NOT NULL

 ,"VDATE_BILLING_DATE"

NVARCHAR(8)

 ,"REGION" VARCHAR(500)

 ,"SUGGESTED_END_USER_PRICE"

DOUBLE CS_DOUBLE DEFAULT 0

 ,"DISTRIBUTOR_LIST_PRICE"

DOUBLE CS_DOUBLE

 ,"DISTRIBUTOR_ADJUSTMENT"

DOUBLE CS_DOUBLE

 ,"SEGMENT_ADJUSTMENT"

DOUBLE CS_DOUBLE

 ,"GROSS_INVOICE_PRICE"

DOUBLE CS_DOUBLE DEFAULT 0

 ,"SAMPLE_DISCOUNT" DOUBLE

CS_DOUBLE

 ,"GROSS_INVOICE_PRICE"

DOUBLE CS_DOUBLE DEFAULT 0

 ,"REBATES" DOUBLE CS_DOUBLE

 ,"COMMISSIONS" DOUBLE

CS_DOUBLE

 ,PRIMARY KEY (

 "INVOICE_NUM"

 ,"INVOICE_ITEM_NUM"

 ,"REGION"

)

) UNLOAD PRIORITY 5 AUTO

International Journal of Science & Technology ISSN (online): 2250-141X
www.ijst.co.in Vol. 8 Issue 1, March 2018

© IJST 4

EXAMPLE FOR ALGORITHM:

 Read item code name for 10 and formula for

item code i.e. [30]*1.25

 Get the name for item code 10 and 30 from

look up table i.e. item code 10 name is

“Suggested end user price” and item code 30

is “Distributor list price”

 For one invoice and item level take value

from formula item and update value using

formula into target item for that invoice num

at item level.

 Ex: Invoice num : 7720672575 and

Invoice_item_num : 000141 for Singapore

region

Item 10 (suggested end user price) formula

is item 30 * 1.25 i.e. (distributor list price

*1.25)

 Get the value for item 30 i.e. “distributor

list price” from invoice item values table as

shown below for above invoice number and

invoice item number.

So, for suggested end user price value as per

formula is distributor list price *1.25

 I.e. 1260*1.25 =1575 and same value is

updated in Item Pivot table for that invoice

number and invoice item. Similarly, the

values are derived all the invoice items for

remaining items values updated with the

same algorithm.

III. CONCLUSION

Understanding of how Dynamic SQL

works will be deeepened with clear

explanations in this white paper and

algorithms. You will be altered to potential

performance problems that are not

mentioned in the documentation and you

will expand your repertoire of tuning

solutions and troubleshooting techniques by

learning how to use numerous hidden

parameters and other undocumented

features.

ACKNOWLEDGMENT

We would like to thank for our organization

to help their technical support and facilitate

lab frequently.

REFERENCES

I. https://technet.microsoft.com/en-us/library/

ms177410(v=sql.105).aspx

II. https://help.sap.com/viewer/de2486ee947e4

3e684d39702027f8a94/2.0.02/en-US/9667

14d37630404983e8f4e3708ae79c.html

III. https://blogs.sap.com/2014/12/16/using-array-as-

internal-table-to-handle-and-process-data/

