
International Journal of Science & Technology ISSN (online): 2250-141X
www.ijst.co.in Vol. 6 Issue 1, February 2016

© IJST - 2016 1

DYNAMIC MR: A DYNAMIC SLOT ALLOCATION

OPTIMIZATION FRAMEWORK FOR MAPREDUCE

CLUSTERS

Prof. Balaji Bodkhe1 , Abhijeet Ahire2, Mayur Chaudhari3, Tushar Fulsoundar4, Akshay Kadam5

1, 2,3,4,5 Department of Computer Engineering,Mes College of Engineering,Pune,India

Abstract:- MapReduce is a popular computing paradigm in Hadoop. MapReduce is used for large-scale
data processing in Big Data. However, the slot-based MapReduce system (e.g., Hadoop MRv1) can suffer
from poor performance due to its unoptimized resource allocation. To solve this problem this paper
identifies and optimizes the resource allocation from three key aspects. First, due to the pre-configuration
of distinct map slots and reduce slots which are not fungible, slots can be severely under-utilized. Because
map slots might be fully utilized while reduce slots are empty, and vice-versa. This paper also proposes
an alternative technique called Dynamic Hadoop Slot Allocation by keeping the slot-based model. It
relaxes the slot allocation constraint to allow slots to be reallocated to either map or reduce tasks
depending on their needs. Second, the speculative execution can tackle the straggler problem, which has
shown to improve the performance for a single job but at the expense of the cluster efficiency. In view of
this, we propose Speculative Execution Performance Balancing to balance the performance between a
single job and a group of jobs. Third, delay scheduling has shown to improve the data locality but at the
cost of fairness. Additionally, the paper propose a technique called Slot PreScheduling that can improve
the data locality but with no impact on fairness. Finally, by combining these techniques together, we form
a step-by-step slot allocation system called DynamicMR that can improve the performance of MapReduce
workloads substantially.The abstract is to be in fully-justified italicized text as it is here, below the author
information.

Keywords: MapReduce, Hadoop Fair Scheduler, Slot PreScheduling, Delay Scheduler, DynamicMR
SlotAllocation.

INTRODUCTION

A Government monitors many states,

districts, Taluka and villages. These regions

consist of different statistical data based on the

residents. As this data is in large volumes, today

most of that data is documented in traditional

ways i.e. documented in files. This results into

human errors, corruption, mishandling of data

and requires infrastructure and money. Our

project i.e. “Implementing Dynamic MapReduce

Slot Allocation Framework”. In Hadoop for

Government Managed Applications” aims at

bringing this large amount of data on the web

using Hadoop. Our application will have feature

to submit document like domicile certificate

required by the Government. These documents

will then be used by concerning officer to verify

the details of residents in future. Our main goal

is to implement Dynamic Map reduce in Hadoop

in order to overcome the limitations faced by the

present Hadoop framework. This will help in

improving the performance of our application

and make effective use of system resources.

Upon successful completion of our project, we

will be able to show benefits of using

DynamicMR in Hadoop and digitalize data of

government that was so far stored traditionally.

Our application will be able to overcome the

International Journal of Science & Technology ISSN (online): 2250-141X
www.ijst.co.in Vol. 6 Issue 1, February 2016

© IJST - 2016 2

difficulties faced by the common man as well as

the government. This will improve

accountability and efficiency of government

applications, bring transparency in government

transactions, makes people aware of advantages

of Computer and Internet.

In recent years, MapReduce has become a
popular high performance computing
paradigm for large-scale data processing in
clusters and data centers .Hadoop , an open
source implementation of MapReduce, has
been deployed in large clusters containing
thousands of machines by companies such as
Yahoo and Facebook to support batch
processing for large jobs submitted from
multiple users (i.e., MapReduce
workloads).Despite many studies in
optimizing MapReduce/Hadoop, there are
several key challenges for the utilization and
performance improvement of a Hadoop
cluster. Firstly, the compute resources (e.g.,
CPU cores) are abstracted into map and
reduce slots, which are basic compute units
and statically configured by administrator in
advance.

EXISTING SYSTEM

Hadoop is a storage technique used in big

data storage. The data retrieval from Hadoop was

previously done with MapReduce technique. The

MapReduce also known as MRV1 consists of 2

main modules: The Mapper and The Reducer.

The mapper is used to divide the data into

standardized configured slots which are then

reduced into 2 slots by the reducer. There is a

collector also known as combiner which also

consists of 2 techniques: Shuffling and Sorting.

The shuffling algorithm integrates all the files

and then sorts them accordingly to the search

result.

A. Hadoop MRV1

MapReduce is a popular computing

paradigm for large-scale data processing in cloud

computing. However, the slot-based MapReduce

system (e.g., Hadoop MRv1) can suffer from

poor performance due to its unoptimized

resource allocation. To address it, this paper

identifies and optimizes the resource allocation

from three key aspects. First, due to the pre-

configuration of distinct map slots and reduce

slots which are not fungible, slots can be

severely under-utilized. Because map slots might

be fully utilized while reduce slots are empty,

and vice-versa.

 Hadoop MRV1 Architecture

“Figure 1 : Architecture of MRV1”

B. Proposed system

As the MRV1 has the drawback of slot

allocation we have proposed a system:

DynamicMR. Due to the slot allocation problem

of MRV1 the slot utilization was inefficient

which ultimately affected the hardware drivers of

a system and its resources. DynamicMR consists

of 3 techniques: Pre-Scheduling, Post-

Scheduling and Delay Time.

International Journal of Science & Technology ISSN (online): 2250-141X
www.ijst.co.in Vol. 6 Issue 1, February 2016

© IJST - 2016 3

C. System implementation:

This system consists of following main

modules that are used for building up the project.

1. MapReduce

2. Hadoop Fair Scheduler

3. Slot Pre-Scheduling

D. MapReduce

MapReduce is a programming model and

an associated implementation for processing and

generating large data sets with a parallel,

distributed algorithm on a cluster.

E. Hadoop Fair Scheduler

The Fair Scheduler supports moving a

running application to a different queue. This can

be useful for moving an important application to

a higher priority queue, or for moving an

unimportant application to a lower priority

queue. Apps can be moved by running yarn.

When an application is moved to a queue, its

existing allocations become counted with the

new queueâTMs allocations instead of the old for

purposes of determining fairness. An attempt to

move an application to a queue will fail if the

addition of the appâTMs resources to that queue

would violate the its maxRunningApps or

maxResources constraints.

F. Slot Prescheduling

Slot Pre-Scheduling technique that holds

ability to improve the data locality while having

no negative impact on the fairness of

MapReduce jobs. The basic level idea is that, in

light of the fact that there are often some idle

slots which cannot be allocated due to the load

balancing constrain during runtime, we can pre-

allocate those slots of the node to jobs to

maximize the data locality.

G. Delay Scheduler

It delays the scheduling for a job by a

small amount of time, when it detects there are

no local map tasks from that job on a node where

its input data reside.

SYSTEM ARCHITECTURE

“Figure 1 : Architecture of DynamicMR showing

the various techniques used such as: DHSA,

SPEB”

We improve the performance of a MapReduce

cluster via optimizing the slot utilization

primarily from two perspectives.

1. We can classify the slots into two types,

namely, busy slots (i.e., with running

tasks) and idle slots (i.e., no running

tasks).

2. Given the total number of map and

reduce slots configured by users, one

optimization approach (i.e., macro-level

optimization) is to improve the slot

utilization by maximizing the number of

busy slots and reducing the number of

idle slots

International Journal of Science & Technology ISSN (online): 2250-141X
www.ijst.co.in Vol. 6 Issue 1, February 2016

© IJST - 2016 4

A. Dynamic Hadoop Slot Allocation

(DHSA)

The current configuration of MapReduce

experiences an under-usage of the slots as the

quantity of map and reduce tasks shifts over the

long run.

Our dynamic slot allocation approach is taking

into account the perception that at distinctive

time there may be idle map(or reduce) slots, as

the jobs continues from map stage to reduce

stage. We can utilize the unused map slots for

those overburden reduce tasks to enhance the

execution of the MapReduce workload, and the

other way around.

That is, we break the certain presumption for

current MapReduce structure that the map tasks

can just run on map slots and reduced tasks can

just run on reduce slots.

There are two challenges specified below that

must be considered:

(C1): Fairness is an imperative metric in

Hadoop Fair Scheduler (HFS). We proclaim it as

reasonable when all pools have been designated

with the same amount of resource. In HFS, task

slots are first allocated over the pools , and later

then the slots are distributed to the jobs inside

the pool. Also, a MapReduce job computation

embodies two sections: map-phase task

computation and reduce-phase task computation.

(C2): The resource requirement between the

map slots and reduced slots are especially

diverse. The purpose for this is the map tasks and

reduced tasks regularly show totally different

execution designs. Reduce task has a tendency to

expend considerably more resources, for

example, memory and system network speed.

Basically permitting reduce tasks to utilize map

slots configuring every map slots to take more

resources, which will therefore lessen the

powerful number of slots on every node, creating

resources under-used amid runtime. With a due

appreciation towards (C1), we set forth a

Dynamic Hadoop Slot Allocation (DHSA). It

contains two choices, to be specific,pool- free

DHSA(PI-DHSA).

B. Pool Independent DHSA (PI-DHSA)

HFS utilizes max-min fairness to allocate

slots crosswise over pools with least ensures at

the map-phase and reduce-phase, individually.

Pool-Independent DHSA (PI-DHSA) extends the

HFS by dispensing slots from the clusters of

worldwide level and free of pools.

The allocation procedure is comprised of two

sections:

C. Intra-phase dynamic slot allocation

Each pool is part into two sub-pools, i.e.,

map phase pool and reduce phase pool. At every

stage, every pool will get its share of slots.

D. Inter-phase dynamic slot allocation

After the intra-phase dynamic slot

allocation for both the map-phase and reduced

phase, next we can perform the dynamic slot

allocation crosswise over typed phase

“Figure 2 : Fairness-based slot allocation flow

for PIDHSA.”

International Journal of Science & Technology ISSN (online): 2250-141X
www.ijst.co.in Vol. 6 Issue 1, February 2016

© IJST - 2016 5

The entire dynamic slot allocation flow is
that, at whatever point a pulse is gotten from a
computing node, at first we process the
aggregate demand for map slots and reduce slots
for the current MapReduce workload. At that
point we focus alertly the need to acquire map
(or reduce) slots for reduce (or map) tasks in
light of the interest for map and reduce slots,
with respect to these four situations. The specific
number of map (or reduce) slots to be obtained is
based on the account of quantity of unused
reduced (or map) slots and its map (or reduce)
slots needed.

To accomplish the reservation usefulness,
we give two variables rate Of Borrowed Map
Slots and rate Of- Borrowed Reduce Slots,
defined as the rate of unused map and reduced
slots that can be obtained, separately. Thus, we
can restrict the quantity of unused map and
reduced slots that ought to be distributed for map
and reduced tasks at every pulse of that task
tracker. With these two parameters, clients can
flexibly adjust the exchange off between the
performance execution optimization and the
starvation minimization.

In addition, Challenge (C2) makes us to
review that we can't treat map and reduce slots as
same, and just obtain unused slots for map and
reduce tasks. Rather, we should be mindful of
shifted resource sizes of map and reduce slots. A
slot weight- based methodology is therefore
proposed to address the issue. We allot the map
and reduce slots with distinctive weight values,
regarding the asset configurations. Particular to
the weights, we can alterably decide the amount
of map and reduce tasks which has to be generate
in the length of runtime.

E. Pool-Dependent DHSA (PD-DHSA)

As an opposite point on checking towards PI-

DHSA Pool-Dependent DHSA (PD-DHSA)
considers fairness for the dynamic slot allocation
across pools. Accepting that every pool, includes

two sections: Map phase pool and Dynamic
Phase pool, is selfish. It is considered fair when
aggregate quantities of map and reduce slots
allocated across pools are the same with one
another. PD-DHSA will be performed with the
accompanying two courses of actions:

(1). Intra-pool dynamic slot allocation

At a early stage, each typed- phase pool will

receive its share of typed-slots based on max-min
fairness at each phase. There are four possible
relationships cases for every pool regarding its
demand (denoted as mapSlots Demand,
reduceSlots Demand) and its workload (marked
as mapShare, reduceShare) between two phases:

Case (a). mapSlotsDemand < reduceShare, and
reduceSlots-Demand > reduceShare. We can use
some of the unused map slots for its overloaded
reduce tasks from its reduce-phase pool first
before using other pools.

Case (b). mapSlotsDemand > mapShare, and
reduceSlots- Demand < reduceShare. we can use
some unused reduce slots for its map tasks from
its map-phase pool first before using pools.

Case (c). mapSlotsDemand < mapShare, and
reduceSlots- Demand < reduceShare. Both map
slots and reduce slots are enough for its use. It
can give some unused map slots and reduce slots
to other pools.

Case (d). mapSlotsDemand > mapShare, and
reduceSlots- Demand > reduceShare. If both
map slots and reduce slots of a pool have
become insufficient. It may have to borrow some
unused map or reduce slots from other pools
through inter-Pool dynamic slot allocation is
shown below.

(2). Inter-pool dynamic slot allocation

It is obvious that, (i). if a pool, has
mapSlotsDemand + reduceSlotsDemand <
mapShare + reduceShare. The slots are enough
for the pool and there is no need to get some
map or reduce slots from other pools

(ii).On the contrary, when mapSlotsDemand +
reduceSlotsDemand mapShare + reduceShare,

International Journal of Science & Technology ISSN (online): 2250-141X
www.ijst.co.in Vol. 6 Issue 1, February 2016

© IJST - 2016 6

the slots are not enough even after Intra-pool
dynamic slot allocation.

The overall slot allocation process for PD-
DHSA is as sketched down below in figure

“Figure 3 : The slot allocation flow for each
pool under PD-DHSA.The numbers labeled in
the graph corresponds to Case (1)-(4) in Section
2.1.2, respectively.”

At first, it computes the maximum number of

free slots that can be allocated at each round of
heartbeat for the tasktracker. Next it starts the
slot allocation for pools. For every pool, there
are four possible slot allocations as illustrated in
Figure above.

Case(1): We try the map tasks allocation,

if there are idle map slots for the task tracker,
and there are pending map tasks for the pool.

Case(2): If the attempt of Case(1) fails,
the condition does not hold good, and it cannot
find a map task satisfying the valid data-locality
level, we continue to try reduce tasks allocation
when there are pending reduce tasks and idle

reduce slots.
Case(3): If Case(2) fails due to the

required conditions does not hold, we try for
map task allocation again. If Case(1) fails then
there might not have to be any idle map slots
available. In contrast, if Case(2) fails then there
are no pending reduce tasks. In this case, we can
relay on reduce slots for map tasks of the pool.

Case(4): If Case(3) fails, we try for
reduce task allocation once again. Case(1) and
Case(3) fail might be because of no valid
locality-level pending and map tasks available,
but there are idle map slots. In contrast, Case(2)
maight not have any idle reduce slots available.
At such cases, we can allocate map slots for
reduce tasks for the pool.

Furthermore, there is a special scenario that
needs to be considered particularly. Note, it is
possible that all the above four possible slot
allocation attempts fail for all pools, due to the
data locality consideration for map tasks.

CONCLUSION

This paper present the idea of enhancing

the storage techniques for Big Data using

Hadoop. DynamicMR provides extra features

that can be used to accelerate the information

retrieval using the Hadoop technology. MRV1

lacks in the efficient storage of data. The MRV1

uses a collector which has a collection of

algorithms to sort the data. As in DynamicMR

the collector is not present and the data is stored

dynamically. The DynamicMR also uses a

mapper to map the accurate data and a reducer

that can reduce the storage slots of this data.

Thus, DynamicMR utilizes the idle as well as

busy slots when retrieving information or when

storing data.

ACKNOWLEDGEMENT

We take this opportunity to express our

profound gratitude and deep regards to our

respected Principal Dr. A. A. Keste , H.O.D.

Prof N. F. Shaikh and our project guide

International Journal of Science & Technology ISSN (online): 2250-141X
www.ijst.co.in Vol. 6 Issue 1, February 2016

© IJST - 2016 7

Prof.B. K. Bodkhe for their guidance, monitoring

and constant encouragement throughout the

course of this thesis .The blessing, help and

guidance given by them time to time shall carry

us a long way in the journey of life on which we

are about to embark.

REFERENCES

I. F.Ahmad,S.Y.Lee, M. Thottethodi, T.

N. Vijaykumar. PUMA: Purdue

MapReduce Benchmarks Suite. ECE

TechnicalReports, 2012.

II. G. Ananthanarayanan, S. Kandula, A.

Greenberg, I. Stoica, Y. Lu, B. Saha, and

E. Harris, Reining in the outliers in

map-reduce clusters using mantri, in

OSDI’10, pp. 1-16, 2010.

III. J. Dean and S. Ghemawat. MapReduce:

Simplified Data Processing on Large

Clusters, In OSDI’04, pp. 107-113, 2004.

IV. Hadoop. http://hadoop.apache.org.

V. A Recommender System Based on a

Machine Learning Algorithm for B2C

Portals http://ieeexplore.ieee.or

VI. A Case-Based Recommendation

Approach for Market Basket Data

http://ieeexplore.ieee.org/xpl/articleDetail

s.jsp?arnumber=6894473newsearch=true

queryText=Casebased

VII. Trust-based decision-making for the

adaptation of public displays in changing

social contexts

http://ieeexplore.ieee.org/xpl/articleDetail

s.jsp?arnumber=6596068newsearch=Stud

y

VIII. Trust enabled Argumentation Based

Recommender System

http://ieeexplore.ieee.org/articl

IX. A Big Data Model Supporting

Information Recommendation in Social

Networks http://ieeexplore.

ieee.org/xpl/articleDetails.jsp?

number=6382911queryText=Social

http://hadoop.apache.org/
http://ieeexplore.ieee.or/
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6894473newsearch=truequeryText=Casebased
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6894473newsearch=truequeryText=Casebased
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6894473newsearch=truequeryText=Casebased
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6596068newsearch=Study
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6596068newsearch=Study
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6596068newsearch=Study
http://ieeexplore.ieee.org/articl

