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ABSTRACT 

 The ternary homogenous quadratic Diophantine equation representing cone given by 

x2+ 7y2 = 16z2 is analyzed for finding its non-zero distinct integral solutions.  Four different 

patterns of integer solutions are presented.  A few interesting relations between the solutions 

and special number patterns are given.    
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1. INTRODUCTION         

The    Ternary     Quadratic     Diophantine  

Equation offers an unlimited field for 

research because of their variety [1-2].  For 

an extensive review of various problems, 

one may refer [3-5]. This communication 

concerns with yet another interesting 

Ternary Quadratic equation  

 x2+ 7y2 = 16z2 representing a homogenous 

cone for determining its infinitely may non-

zero integral solutions.  Also a few 

interesting relations among the solutions 

have been presented.  

Notations used: 

Tm,n= Polygonal number of rank n with 

sides m.  

2. Method of Analysis  

The ternary Quadratic equation to be solved 

for its non-zero integer solution is  

x2 + 7y2  = 16z2             (1) 

We present below different patterns of non-

zero distinct integer solutions to (1) 

 

Pattern : 1 

Write (1) as  

(x + 3z) (x – 3z) = 7 (z +y) (z – y), 

which is written in the form of ratio as  

( 3 ) ( )
7 , 0

( ) ( 3 )

x z z y A
B

z y x z B

 
  

 
        (2) 

This is equivalent to the following two 

equations  

Bx – Ay – (A – 3B) z = 0  

- Ax – 7By + (3A + 7B) z = 0  

Applying the method of cross 

multiplication, we get  

x = x (A, B) = -3A2 – 14AB + 21B2    

y = y (A, B) = A2 – 6AB – 7B2 (3) 

z = z (A, B) = - A2 – 7B2  

    

Thus, (3) represents non-zero distinct 

integral solutions of (1) in two parameters.  
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Properties:- 

1. 3y (A, A +1) + x (A, A+1) = - 32 PrA  

2. x (A, 1) + 3t4,A + G7A ≡ 0 (mod 2)  

3. x (1, B) – 21t4,B + G7B ≡ 0 (mod 2)  

4. 3y (1, B) – x (1, B)+42t4,B –G2B≡1(mod 3) 

5. y (1, B) + 7t4,B + 2G3B  ≡ 0 (mod 2)  

6. z (1, B) + 7t4,B + 1 = 0. 

7. y(2, B) + 7t4,B + 2G6B ≡ 1 (mod 2)  

8. 4x (1,B)+2z(1, B)–70 t4,B +2 G28≡ 1(mod2)   

Pattern: 2     

Introducing the transformations  

x = 3, y = x +16T, z = x + 7T  (4)  

in (1), we have  

2 = x2 – 112T2,                      (5) 

which is satisfied by 

T = T (A, B) = 2AB  

x= x (A, B) = 112A2 + B2   (6) 

 =  (A, B) = 112A2 – B2 

Substituting (6) in (4), the non – zero 

distinct integral solutions of (1) in two 

parameters are given by  

x = x (A, B) = 3 (112A2 – B2)  

y = y (A, B) = 112A2 + B2 + 32AB  

z = z (A, B) = 112A2 + B2 + 14AB  

Properties:  

1. x(1, B) + 3 t4,B ≡ 0 (mod 2)   

2. y(A, 2) – 112 t4,A – 2G32A ≡ 1 (mod 2)  

3. y(1,B)–x(1,B)–4PB+G14B ≡  1 (mod 2) 

4. z(A, 2) – 112t4,A + G14A ≡ 0 (mod 5)  

5. y(A, 3) – 96 PA – 16t4,A ≡ 1 (mod 2)  

6. x(1,B)–2z(1, B)+ 5t4,B+G14B ≡ 1(mod2)  

7. y(A, 4) – 112PA – G8A ≡ 1(mod 2) 

8. y(1,B) + z(1,2B) – 5t4,B – G30B  ≡ 0(mod5)  

Pattern - 3  

Assume z = z(a, b) = a2+7b2, a, b > 0     (7) 

Write 16 as16 = )73)(73( ii        (8) 

Substituting (7) and (8) in (1), and 

employing the method of factorization, 

define  

 (x+i 7 y) = )73( i  (a+ i 7 b)2         (9) 

In (9), on equating real and imaginary 

parts, we get  

 x = x (a, b) = 3a2 – 21b2 – 14ab  

 y = y (a, b) = a2 – 7b2 + 6ab.  

As our interest centers on finding integer 

solutions, it is seen that X and Y are 

integers for suitable choices of a and b. A 

few illustrations are given below  

Case :1    Let a = 3A, b = 3B  

The corresponding solutions of (1) are  

x = x (A, B) = 9A2 – 189B2 – 126AB  

y = y (A, B) = 3A2 – 63B2 + 54AB  

z = z (A, B) = 9A2 + 63B2 

Properties  

1. x(A,1) + y(A,1)–6t4,A + G36A  ≡ 1 (mod 2)  

2. y(1, B) + 63t4,B – G27B ≡ 0 (mod 2)  

3. x(A, 1) – 9 t4,A + G63A  ≡ 0 (mod 2) 

4. z(1, B) – 63t4,B ≡ 0 (mod 3)   

5. y(A, 1) + z(A, 1) – 12PA – G21A – 1 = 0  
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Case 2:    Let a = 3A+1, b = 3B+1 

The corresponding solutions of (1) are   

 x = x (A,B) = 27A2 – 189B2 – 24A –168B – 32  

y = y (A, B) = 9A2 – 63B2 + 24A – 45B.  

z = z (A, B) = 9A2 + 63B2 + 6A + 42B + 8  

Properties  

1. x(A, 1) – 27t4,A + G12A ≡ 0 (mod 2) 

2. y(1, B) + 45PB + 18t4,B  ≡ 1 (mod 2)   

3. z(1, B) – 63t4,B + G21B ≡ 0 (mod 2)  

4. y(2, B) + 45PB + 18t4,B ≡ 0 (mod 2)  

5. 2y(A,B)–z(A,B)– 9t4,A + 63t4,B – G21A + G42B    

   ≡ 0 (mod 2)  

Pattern: 4 

Write (1) as   16z2 – x2 = 7y2                (12)  

Write 7 as 7 =  16 3   16 3       (13)  

Assume y = y(a,b) = 16a2 – b2, a, b 0  (14)  

Using (13) and (14) in (12) and employing 

the method of factorization, define  

     
2

16  16 3   16z x a b       (15)  

Equating rational and irrational parts in 

(15), we get  

 x = x (a, b) = 48a2 + 3b2 + 32ab   

 z = z (a, b) = 16a2 + b2 + 6ab                (16)  

Thus (16) & (14) represent non – zero 

distinct integral solutions of (1) in two 

parameters.  

 

 

 

Properties:  

1.  x (1, B) – t8,B + g15B  ≡ 1(mod 1)  

2.  y (A, 4) – 16t4,A  ≡ 0 (mod 2)  

3.  x(A,2) – t98,A + t226,A– 112t4,A ≡ 0 (mod 2) 

4.  x (A,1) + 2y(A,1) – t162,A – t6,A+ 2t4,A – g56A    

      ≡ 0 (mod 2) 

5.  x (A, A+1) – 83t4,A – g19A ≡ 0 (mod 2)  

6.  x (4,B) – 3PB + t254,B – 2g63B ≡ 1 (mod 2)  

7.  y (3, B) + t4,B ≡ 0 (mod 2)  

8.  z (A, 1) – 16t4,A + 2g3A ≡ 0 (mod 2)  

9.  y (A, 1) +z (A, 1) – 32t4,A – 2g3A + 1 = 0  

 

3. CONCLUSION  

 In this paper, we have presented 

four different patterns of non-zero distinct 

integer solutions to the ternary quadratic 

Diophantine equation x2 +7y2 = 16z2 

representing a cone.  To conclude one may 

search for patterns of non-zero distinct 

integer solutions satisfying the cone under 

consideration.  
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